
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

ANALYSIS OF CLOUD-BASED DATABASE SYSTEMS 
 

by 
 

Matthew J. Clyman 
 

June 2015 
 

Thesis Advisor: Geoffrey G. Xie 
Second Reader: Arijit Das 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2015 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
ANALYSIS OF CLOUD-BASED DATABASE SYSTEMS 

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Matthew J. Clyman 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release;distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
 

To take advantage of cloud computing benefits that boost an enterprise’s efficiency, innovation, and cost savings, the 
Department of Defense’s (DOD) cloud computing strategy needs to evaluate databases as a service. If the DOD is 
going to prioritize outsourced database server hosting, each application’s performance and agility of each must be 
assessed to determine if they can thrive in this new environment. 

We performed an experiment to compare the performance between a current Naval Postgraduate School 
standalone database server and a cloud version developed specifically for the experiment. The cloud environment was 
created both with resources less equal to and greater than the live standalone server. We simulated cloud environment 
traffic based on the type of queries observed in production and collected data to compare its performance against the 
standalone database. 

The results show that the cloud database performed similarly to or better than our standalone server, with 
equivalent resources. It achieved this level of performance without utilizing additional resources. We increased the 
resources dedicated to our cloud environment to test scalability, and we witnessed that the time needed to execute 
queries decreased significantly. We therefore concluded that our database would perform and scale favorably in a 
cloud environment. 

 

 

 

 
14. SUBJECT TERMS  
Database, cloud database, private cloud, performance analysis, SQL Profiler, Performance Monitor, 
PerfMon 

15. NUMBER OF 
PAGES  

65 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

ANALYSIS OF CLOUD-BASED DATABASE SYSTEMS 
 
 

Matthew J. Clyman 
Civilian, Department of the Navy 

B.S., California Polytechnic State University San Luis Obispo, 2009 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
June 2015 

 
 

 
 
Author:  Matthew J. Clyman 

 
 
 

Approved by:  Dr. Geoffrey G. Xie 
Thesis Advisor 

 
 
 

Arijit Das 
Second Reader 

 
 
 
 

Dr. Peter J. Denning 
Chair, Department of Computer Science 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 

To take advantage of cloud computing benefits that boost an enterprise’s efficiency, 

innovation, and cost savings, the Department of Defense’s (DOD) cloud computing 

strategy needs to evaluate databases as a service. If the DOD is going to prioritize 

outsourced database server hosting, each application’s performance and agility of each 

must be assessed to determine if they can thrive in this new environment. 

We performed an experiment to compare the performance between a current 

Naval Postgraduate School standalone database server and a cloud version developed 

specifically for the experiment. The cloud environment was created both with resources 

less equal to and greater than the live standalone server. We simulated cloud environment 

traffic based on the type of queries observed in production and collected data to compare 

its performance against the standalone database. 

The results show that the cloud database performed similarly to or better than our 

standalone server, with equivalent resources. It achieved this level of performance 

without utilizing additional resources. We increased the resources dedicated to our cloud 

environment to test scalability, and we witnessed that the time needed to execute queries 

decreased significantly. We therefore concluded that our database would perform and 

scale favorably in a cloud environment. 



 vi 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. PROBLEM STATEMENT AND METHODOLOGY .................................2 
B. RESEARCH DESCRIPTION AND HYPOTHESIS ....................................2 
C. ORGANIZATION ...........................................................................................3 

II. BACKGROUND AND RELATED WORK ..............................................................5
A. ORIGINS AND FUNDAMENTAL KNOWLEDGE ....................................5 
B. OVERVIEW OF CLOUD COMPUTING.....................................................7 
C. TYPES OF CLOUD ARCHITECTURES .....................................................8 
D. TYPES OF CLOUDS ......................................................................................8 
E. CLOUD DATABASES BACKGROUND ......................................................9 
F. BENEFITS OF CLOUD COMPUTING .....................................................10 
G. DEPLOYMENT CONSIDERATIONS FOR CLOUD DATABASES .....12 

III. OUTLINE OF EXPERIMENT ................................................................................13
A. DESCRIPTION OF APPLICATION ..........................................................13 
B. CREATING A BASELINE OF SYSTEM LOAD ......................................14 
C. SQL PROFILER TRACES ...........................................................................17 

IV. RESULTS AND ANALYSIS ....................................................................................21
A. DATA COLLECTION, PARSING, AND ORGANIZATION ..................21 

1. Data Collection ...................................................................................21
2. Reading SQL Profiler Data into SQL Table ...................................22
3. Query Composition Gathering .........................................................22

B. BASELINE MAKEUP OF PRODUCTION ................................................23 
C. IMPLEMENTATION AND STACKING OF QUERIES ..........................24 
D. DATA COLLECTION AND ANALYSIS ...................................................25 
E. PERFORMANCE MONITORING RESULTS ..........................................27 

V. CONCLUSIONS AND FUTURE WORK ...............................................................39 
A. CONCLUSIONS ............................................................................................39 
B. FUTURE WORK ...........................................................................................41 

LIST OF REFERENCES ......................................................................................................43 

INITIAL DISTRIBUTION LIST ........................................................................................45 



 viii 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



 ix 

LIST OF FIGURES 

Figure 1. Cloud providers and their users. It is important to note that the SaaS 
Provider and SaaS Users could be one and the same. For example, 
business review site Yelp.com could be providing maps to businesses 
generated from a Google maps service. .............................................................6 

Figure 2. The users connect through the webserver PI, which connects to the 
internal database Sapphire. Utina is the reporting server that is indirectly 
accessed by the users. ......................................................................................14 

Figure 3. This trace shows information regarding the Application that connects, the 
username, loginname, reads, writes, the process ID, the start time, end 
time, and binary data which is the SQL being executed against the 
database. ...........................................................................................................19 

Figure 4. The queuing compared between production, and our first two server 
iterations with resources at half than and equal to production.........................28 

Figure 5. Comparison of our production machine to the 8-Core and 16-Core test 
machines. .........................................................................................................28 

Figure 6. Batch requests of our 5 test iterations overlaid in a line chart. ........................29 
Figure 7. Memory Grants Pending for our 5 iterations. The only server that saw any 

grants pending was our first iteration with 2 cores. .........................................30 
Figure 8. The concurrent user connections for each experiment. ...................................31 
Figure 9. Page life expectancy of queries in memory. ....................................................32 
Figure 10. The percentage of processor utilization for our first two system iterations 

overlaid. ...........................................................................................................33 
Figure 11. The percentage of processor utilization for our production system and our 

two higher resourced systems. .........................................................................33 
Figure 12. Amount of disk reads per second for all five iterations. ..................................34 
Figure 13. Bytes retrieved from the disk per each read.....................................................35 
Figure 14. Disk writes per second for production overlaid with our two smaller 

systems. ............................................................................................................36 
Figure 15. The disk writes per second overlaid with production and our two final 

higher-resourced machines. .............................................................................37 
 



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi 

LIST OF TABLES 

Table 1. The sys.dm_io_virtual_file_stats DMV produces data regarding the 
amount of reads/writes that have occurred since the database was last 
restarted. The number of reads/writes are in a magnitude of 1000s. ...............23 

Table 2. The query makeup from a day in production. ..................................................23 
Table 3. The query makeup after running the top ten queries against our 

development machine using the newid() function for a whole day. This 
data was inserted using SQL Profiler into a table in our remote database 
and then sorted. ................................................................................................25 

Table 4. The average and maximum duration of query times as well as the average 
and max number of reads per request for each system. ...................................26 

Table 5. Average processor queue performance for each system configuration. ..........29 
Table 6. Average batch requests for each system configuration. ...................................29 
Table 7. Average memory grants pending for each system configuration. ...................30 
Table 8. Average amount of user connections over the 9-hour window for each 

system. .............................................................................................................31 
Table 9. Page life expectancy for each system configuration. .......................................32 
Table 10. Average % usage of the processor being utilized for each system 

configuration. ...................................................................................................33 
Table 11. Average disk read requests per second. ...........................................................34 
Table 12. Average number of bytes retrieved per request for each system 

configuration. ...................................................................................................35 
Table 13. Average disk write requested per second for each system configuration. .......37 
 
 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

ACID Atomicity, Consistency, Isolation, and Durability 

DBaaS Database as a Service 

DBA Database Administrator 

DOD Department of Defense 

DMV Dynamic Management Views 

EU European Union 

GUI Graphical User Interface 

GUID Globally Unique ID 

IaaS Infrastructure as a Service 

MMC Microsoft Management Console 

NIST National Institute of Standards and Technology 

NPS Naval Postgraduate School 

PaaS Platform as a Service 

PERFMON Performance Monitor 

PYTHON Program Yet to Have Original Name 

RDBMS Relational Database Management Software 

SaaS Software as a Service 

SAN Storage Area Network 

SMO Server Management Object 

SQL Structured Query Language 

VM Virtual Machine 

 



 xiv 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv 

EXECUTIVE SUMMARY 

Private database cloud services or database as a server is not a cutting-edge idea. It has 

spent its time going through the adoption cycle and is now the accepted standard for 

development and testing environments both in the private and public cloud. Efforts have 

been made in the Department of Defense (DOD) to move toward a more cloud-based 

hosting model to take advantage of cloud technology, but there are few case studies 

documenting the results of these efforts. Our experiment sought to address this lack of 

data by migrating a current DOD production database to a cloud environment. 

For this thesis we deployed and modified the resources available to a Virtual 

Machine (VM) version of the Naval Postgraduate School (NPS) PYTHON database 

server in the private cloud environment and evaluated its performance against the current 

standalone production database. The private-cloud resources granted to the VM were in 

configurations of 2 CPUs and 4 Gigabytes (GB) of RAM, 4 CPUs and 8GB, 8 CPUs and 

16GB, and lastly 16 CPUs and 32GB of RAM. After deploying the VM, we installed 

SQL Server 2014 relational database management software (RDBMS) and restored a 

copy of the PYTHON database onto the server. To properly assess the performance in 

each configuration, a comparable traffic load to production needed to be generated. By 

examining the dynamic management views within SQL Server, we retrieved lists of the 

most commonly executed queries, the percentage of reads versus writes, as well as 

volume of each main query type (SELECT, INSERT, UPDATE, and DELETE.) This 

became the synthetic traffic load that we would run against each VM configuration so we 

could gather various performance metrics. This load was virtually identical when 

executed on our private-cloud VM, and was comparable to that experienced on our live 

production server. We then this synthetic traffic on our VM for 24 hours and repeated the 

process again for each different resource level. While the traffic flowed, we captured 

performance metrics using SQL Profiler and Windows Performance Monitor. 

After analyzing the performance figures, we were happy to discover that our 

cloud-based VM, with the same resources as production, performed similarly. The time it 

took for a query to complete on average for the production system was 136,746 



 xvi 

microseconds. On our cloud-based system, the average was 198,875 microseconds, 

executing only .062 seconds slower. The cloud-based VM was able to perform the same 

amount of work without utilizing a higher percentage of its CPU cores. We found our 

cloud-based VM would use just 2.97% of its four cores on average, compared to the 

production system’s average of 5.36%. When we allocated even more processing power 

to the later trials at 8 and 16 CPU cores, we saw even greater performance gains. The 8-

Core iteration averaged 124,478 microseconds for queries to complete, and 29,171 

microseconds when repeated using the 16-Core iteration. 

The results showed that our production database application is well suited for 

deployment in a cloud-based environment. The low numbers for the average processor 

usage showed that additional processing overhead is not needed for the database to 

function. In other words, no significant additional resources are required to obtain a 

similar level of performance in the private cloud. The server proved to scale appropriately 

with additional resources, proving that our database can take advantage of the elasticity 

of the cloud environment. 

 



 xvii 

ACKNOWLEDGMENTS 

The author wishes to acknowledge the following people for their contributions to 

his thesis: Geoffrey G. Xie, Robert Beverly, Brent Ozar, Gregory Syme, Edgar Mendoza, 

and Kristen Smith. 



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

Cloud computing has become one of the most popular tech-buzzwords of the past 

decade. It has garnered attention from accountants and management for advertised cost 

advantages, and from system administrators and data analysts for its reliability and 

scalability. In an era of consolidated and centralized resources, both in the government 

and in private industry, cost savings is an important priority. We are living under the 

looming shadow of continued sequestration, with the United States operating globally 

with a smaller budget in an increasingly dangerous world. The results have been the 

suspension of our ships at sea, our helicopters in the air, our training on the ground [1], 

and the pay of our civilian workforce [2]. 

The adoption of cloud practices has been anything but swift. Concerns about 

security and access have prevented most efforts in the Department of Defense (DOD) 

thus far, and they should. Our own government has seized cloud-hosted data of European 

Union (EU) citizens under the Patriot Act [3]. Unforeseen virtualization bugs have 

caused wide-reaching outages [4], leaving customers helpless to assist. When errors 

happen, there is little companies can do but ask for updates from their service providers. 

We are in an age in which the leaking of our private data and credit card numbers 

are not a possibility but an eventuality [5]. Why, in the face of all this, should we put our 

data and security in the hands of another when we have been storing it within our own 

firewalls for decades? The answer is cost savings and scalability. 

Enterprises need to consider the benefits and the drawbacks of adopting cloud 

computing in their organizations. While apparent cost savings are the main impetus for 

adopting a cloud-computing model, the security, flexibility and compatibility of an 

organization’s systems need to be maintained; otherwise, the new cloud system would 

degrade these properties. The storage of data, hosting of applications and performance of 

database systems all have to be individually evaluated and gradually migrated if cloud 

computing has any hope of being successful. 



 2 

A. PROBLEM STATEMENT AND METHODOLOGY 

Few documented case studies focused on moving DOD database applications to 

cloud-based hosting exist. This experiment’s goals were to move a DOD database to a 

cloud environment in order to understand the performance implications of the migration, 

and determine if our database performance scales with additional resources. 

To accomplish this, we deploy a cloud-based version of a production database at 

the Naval Postgraduate School (NPS) and then create synthetic traffic based on the query 

composition of queries executed on the current production system. This load allowed us 

to accurately compare performance metrics from our VM environment. We looked at the 

average query completion time, resource utilization, and queues for resources. 

Collecting data in such a manner required a few tools. First, to collect data 

regarding server performance, we used a Microsoft Windows tool called Performance 

Monitor. This gave us data regarding resource utilization and queueing. The second tool 

we used was the SQL Server Profiler provided by Microsoft SQL Server. This tool 

allowed us to capture a large array of SQL specific metrics. We were most interested in 

the average completion time. This was our main metric used for comparison. 

B. RESEARCH DESCRIPTION AND HYPOTHESIS 

We hypothesized that we could identify the performance of our database if it were 

to be deployed in a cloud environment by gathering multiple performance metrics. 

Traffic can be gathered against our current system and then replicated in a test 

environment; this will allow us to gather a second round of metrics and compare them to 

those taken against our currently running database. We pose the following as our 

hypotheses, in order of importance: 

1. The average query completion time for the private-cloud database will be 

similar to that of the standalone server when provisioned with a similar 

amount of processing and storage capacity.  

2. The private-cloud environment will utilize the same amount of processing 

power or more in order to produce the same amount of throughput as the 

standalone server. 



 3 

3. With increased processing and storage resources, we will see a minor 

increase in the performance of the private-cloud database. 

C. ORGANIZATION 

Chapter II reviews the background information for the research. There are several 

sections which review the history and current state of cloud computing and outline our 

reasoning behind pursuing this research. This chapter sets up the main goal of the 

research topic, and sets up the reader to be able to understand our approach in the 

subsequent chapters 

Chapter III uses the concepts and knowledge provided in Chapter II as a starting 

point for introducing our analysis strategy. We will review multiple strategies for 

analyzing SQL traffic and the resulting load on system resources and the effect on query 

throughput. Lastly, we develop a method for collecting data from a live system and 

review its counterpart in our test system. 

The results of our data collection and analysis are presented in Chapter IV. We 

look at Performance Monitor data first. Secondly, we analyze data collected from SQL 

Server Profiler traces. We analyze the trace results captured from our test bed both before 

and after increasing system resources. 

Chapter V includes the conclusions of the research and recommendations. We 

discuss the benefits and planned future work. 



 4 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 5 

II. BACKGROUND AND RELATED WORK 

“Cloud computing” refers to the pooling of networking resources, either publicly 

or privately available, in order for a user to utilize a service or program without the 

required software or associated hardware installed on his or her workstation. The “cloud” 

refers to the almost nebulous location where this software and hardware is effectively 

located. Exactly where the software and hardware is located is not important for the end-

user; all that is important is that services remain available whenever they are required. 

Cloud computing is attractive to consumers for multiple reasons. There exists the 

illusion of a near-infinite amount of computing resources, which eliminates the need for 

users to plan ahead in their provisioning as long as the application can scale elastically. 

The ability to pay as you go reduces upfront investment and unnecessary overhead, 

because the amount of resources needed can scale back down during periods of decreased 

activity. 

Many models of Cloud-based services exist; the one we are most interested in is 

databases as a service, but before we get into that we must first examine the origins of 

this technology. 

A. ORIGINS AND FUNDAMENTAL KNOWLEDGE 

In the 1990s, adoption of Internet use became universally available [6]. Services 

such as mail, news, fora, and eventually entertainment were being provided over the 

Internet. One of the earliest examples of cloud computing that most people are familiar 

with is web-based email.  

Back in 1995, access to email servers required that software be installed on each 

user’s machine. AOL.com utilized the model shown in Figure 1 at that time [7].  



 6 

 
Figure 1.  Cloud providers and their users. It is important to note that the SaaS 

Provider and SaaS Users could be one and the same. For example, 
business review site Yelp.com could be providing maps to businesses 

generated from a Google maps service. 

At the end of the .com boom of the late 1990s, the majority of datacenters were 

utilizing 10% of their system resources at any one time [8]. This was due to the 

inflexibility of server provisioning. Successful service providers had to allocate enough 

resources to allow their system to still be available during peak usage. In times of reduced 

usage, there was no way to reduce power usage or hardware maintenance costs. You 

could not simply send the extra cashiers home and dim the lights. The booths stayed 

manned, the lights stayed on, and wood never stopped being fed into the fire. 

In 1996, Hotmail and other web-based email cloud services emerged. For the first 

time, users could access their mail via a web browser without being responsible for where 

the software or hardware required for handling all that information resided [9]. With the 

expanse of computer utility servicing in the early 2000s, clients could enjoy greatly 

simplified software installation and maintenance while not being responsible for 

upgrading their own hardware. 

In the early 2000s Intel, Amazon, and Microsoft provided these utility services, as 

well as datacenters hosting servers for VM deployment [10]. Now we had service suites 

including storage, computation and various other services.  

It was not until October 2006, when Google released Google Docs and Sheets (a 

reworking of Writely), that software was offered as a service office suite. In Google Docs 



 7 

[10], documents, presentations, and spreadsheets could be created, imported, or shared 

via email. Version history could also be saved on Google’s servers. 

B. OVERVIEW OF CLOUD COMPUTING  

Cloud computing is effectively the sharing of network resources to achieve a 

reduction in operating costs while simultaneously leveraging aggregated resources to 

greatly increase profits and coverage. Cloud computing is based around sharing services 

supported on a larger installed infrastructure. 

Cloud computing is focused on maximizing the effectiveness of resources. “The 

Cloud” refers to a set of resources that are widely distributed while the underlying 

machinations are blurred, much like the haziness of a cloud. One of the key features of a 

cloud environment is the ability of the resources granted to a customer to dynamically 

grow to meet demand. Thus, regardless of the distribution of queueing for resources, the 

customer can efficiently grow his resource pool to meet demands in the short term, and 

dynamically shrink back to minimal levels to reduce costs [11].  

In the same way that gas, water, and electricity are resources that can be accessed 

on demand, such is the goal of cloud-based computational power. The National Institute 

of Standards and Technology’s (NIST) definition on cloud computing is as follows: 

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, applications, and services) that 
can be rapidly provisioned and released with minimal management effort 
or service provider interaction. [12] 

Wikipedia, however, defines cloud computing as “deploying groups of remote 

servers and software networks that allow centralized data storage and online access to 

computer services or resources….classified as public, private or hybrid” [13]. 

Knowing what we do about cloud computing and data centers, we can safely say 

that cloud computing involves a centralized pool of resources that can be assigned to 

users nearly autonomously and then re-appropriated when not in use. The closer it 

resembles a utility service provider, with the ability to be monitored and access regulated, 

the more a service resembles a cloud computing platform. 



 8 

C. TYPES OF CLOUD ARCHITECTURES 

Cloud computing is based upon three major types of provided services: Software 

as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). 

(1) Software as a Service (SaaS) 

Software as a Service refers to applications being hosted by a service over the 

Internet. Most of the time these applications can be accessed with nothing outside of a 

web browser and account access. The user has no interaction with the server 

configuration or maintenance. An example of this would be email hosting like Gmail. 

(2) Platform as a Service (PaaS) 

This portion of services allows customers to develop web applications without 

any of the complexity of creating and maintaining the underlying infrastructure. The 

standard PaaS is delivered with the provider handling the network, server, and storage as 

the host. The consumer installs and maintains the software configuration and upgrades. 

By software we mean that which the consumer has been developing, the underlying 

software needed for the hosting is all managed by the PaaS. 

Database services fall under the PaaS umbrella [14]. A typical web application 

will have an application server, web server and database server, all of which would be 

managed by the PaaS, with the consumer only developing and deploying its application 

code. 

(3) Infrastructure as a Service (IaaS) 

The third type of service provided is Infrastructure as a Service. The customer 

outsources the equipment used to support his operations to a service provider. This 

includes the servers, hardware, storage, and networking. The service provider is 

responsible for maintaining and updating the equipment [15]. 

D. TYPES OF CLOUDS 

There are numerous cloud deployment models; however, for the sake of brevity, 

this thesis only reviews the broader models addressed for evaluation. 



 9 

(1) Private Cloud 

The private cloud is an environment created and operated solely for a single 

organization. The management and hosting of resources can be handled either internally 

or externally. The main benefit of a private cloud is that security of data and access is 

more transparent in this method. Instead of segregating individual systems and servers, 

they all draw from the same pool, hoping to minimalize underutilized resources. This 

model still requires the company to build and maintain a datacenter as well as manage the 

virtualized environment for distributing resources. Because of this, the economic benefit 

is not as significant, but benefits can still be had. 

(2) Public Cloud 

The public cloud is an environment which hosts services available for public 

consumption. Services are offered on a pay-per-usage method. Security concerns are a 

bigger issue under this model as the company does not manage administrative access and 

simply has to trust that the datacenter is properly handling access control. It is the 

responsibility of the company to only be storing public-facing data in the cloud for 

consumption, but business processes are not always that straightforward. 

(3) Hybrid Cloud 

The hybrid cloud is a composition of two or more clouds [16]. This would allow 

an entity to have a section of their services managed privately on their own systems for 

security reasons. It would also allow it to utilize more cost saving measures by keeping 

its public facing content on a public cloud environment. 

E. CLOUD DATABASES BACKGROUND 

A cloud database is simply a database that runs on a cloud computing platform. 

This could be from Microsoft Azure [17], Amazon EC2 [18], Rackspace, or others. The 

user can either upload or utilize a virtual machine template image for their database or 

they can purchase access to a database as a service (DBaaS). Both options allow for 

elastic scaling of resources to meet demand requirements. 

 



 10 

(1) Database as a Service (DBaaS) 

Multiple cloud platforms offer database as a service, where a user is not 

responsible for launching or maintaining the database software. Under this model the 

company such as Microsoft would launch a database for the user and charge them by its 

usage. This model can be as limited as providing a client with a VM image with database 

software preinstalled, or the cloud provider could host and manage the database of one of 

its own replicated clusters. 

(2) Scaling of Cloud Databases 

Virtualization has enormous benefits for cloud computing, namely databases. 

However, running a database in a virtual machine is not the same as database 

virtualization. In a dedicated server environment, a spike of utilization would have to be 

handled by the existing resources available to the created VM. 

F. BENEFITS OF CLOUD COMPUTING 

There are a myriad of advantages to cloud computing. The most commonly 

discussed are the reduction in initial investment, scalability of environment, increased 

availability and reduced points of failure. Besides these there are even more subtle 

advantages such as smoother mergers and acquisition and flexibility to try out new 

technologies [19]. However, for this thesis we will only discuss the most common topics 

and briefly mention the subtle differences. 

(1) Less Initial Investment 

When deploying an application over a cloud service, very little investment is 

needed for infrastructure or hardware. In an organization that hosts all its servers in-

house, resources would need to be initially allocated from its Storage Area Network 

(SAN) and deployed via a VM. If this organization does not use a SAN, or has maxed out 

its resources, a new server must be purchased before any work can begin. With a cloud 

deployment, little to no resources must be expended until the service is in use, and as the 

load increases beyond its allocated level of resources it can scale to meet the need. 

 



 11 

(2) Scalability 

The rapid provisioning and release of resources is fundamental to cloud 

computing. If you ask anyone who has spent time in server provisioning you will hear the 

same complaint over and over; that allocated resources are under-utilized. Depending on 

the application, it may be dangerous to release CPU cores or decrease the RAM without 

modifying system parameters. None of this can be done when the system is online. When 

it comes to storage space the picture is even bleaker. Most monitoring software begins 

alerting administrators when capacity on a drive drops below a pre-set threshold. Having 

a storage buffer is the best scenario, meaning lots of under-utilized storage media. In a 

cloud environment you can add storage as you reach maximum capacity, not at the 

conception of your system. 

(3) Increased Availability 

Two items affect availability; outages and downtime. In a replicated cloud 

environment, the odds of having a hardware failure affect one’s environment is 

exceedingly low [20]. Depending on the requirements of your system even further 

precautions can be placed to minimize outages. Not readily apparent, but noteworthy, is 

the maintenance afforded by having one’s server upgraded and patched by an 

experienced cloud team. This minimizes scheduled downtime, and can even be 

performed without taking one’s application offline. Having a distributed cloud 

deployment increases the amount of points that must fail, thus increasing the resilience of 

one’s environment. 

(4) No Single Points of Failure 

The underlying resources of a deployed server traditionally all reside on the server 

blade plugged into a server rack. With cloud computing, the CPU’s may span multiple 

blades, servers, and even amongst different data centers [21]. This also affects network 

bottlenecking. Now all the data that must be processed is flowing over multiple network 

pathways, reducing the chances of an oversaturated network resulting from an 

unexpected flux in traffic. 



 12 

G. DEPLOYMENT CONSIDERATIONS FOR CLOUD DATABASES 

The maintenance of atomicity, consistency, isolation, and durability (ACID) is the 

main obstacle to implementing transactional cloud databases [22]. In a cloud database the 

state of data must remain consistent. The read/write operations of a database have to be 

executed without sacrificing ACID properties. If one user is attempting to read a record 

that is currently being updated by a concurrent user the traditional operation that occurs is 

a lock. The user reading the record must wait until the update transaction completes and 

is committed before he is allowed to read the record. As soon as multiple copies of the 

database are introduced among a single or multiple datacenters, the synchronization 

becomes a challenge. Atomicity requires that all operations of a transaction are done 

successfully or none of them are. 

 



 13 

III. OUTLINE OF EXPERIMENT 

The goal of this thesis was to test a production database in a private cloud 

environment and analyze its performance. This was performed in a test environment, all 

traffic was simulated to be similar to the load experienced in production. In order to do 

this we first analyzed the current network traffic and differentiated the types of queries 

that made up our model.  

Due to my position at NPS as the lead database administrator and my familiarity 

with the Identity Management System (IMS), I have a high-fidelity insight into the nature 

of the data collected. My approach was white-box, as I could see what volume of traffic 

was occurring and the exact makeup and queries performed.  

This level of fidelity allowed me to build a more realistic picture of how 

performance was affected in the environment, since information other than job length and 

duration were known. Information such as tables queried and joins performed were made 

available. 

I deployed our IMS database system in a private cloud environment. After setting 

the database, I created a load similar to that occurring on our production system. Live 

data was sampled to create a baseline from which analysis could be made and the 

technology evaluated. 

A. DESCRIPTION OF APPLICATION 

For this experiment, we wanted to not just test that a standard database can be 

scaled effectively in a virtualized environment; it had to be one with which we could 

modify the load and verify that it fit the standard load profile. After reviewing the various 

systems and applications at NPS, we decided to utilize our IMS. 



 14 

 
Figure 2.  The users connect through the webserver PI, which connects to the 

internal database Sapphire. Utina is the reporting server that is 
indirectly accessed by the users. 

Our IMS system at NPS was described by Registrar Director Mike Andersen as “a 

mission-critical system to NPS. If (when) [IMS] fails, education at NPS stops. There is 

no scheduling, no [grading], no transcripts, or no diplomas. [IMS] is essential to 

achieving the mission of the school.” IMS is a SQL Server database currently installed on 

a Windows Server 2008 OS. The production system utilized 4 CPUs and 8GB of system 

RAM. Due to my relation with the datacenter administrators here on campus, getting a 

similar machine with fewer resources would prove an easy task. 

B. CREATING A BASELINE OF SYSTEM LOAD 

In order for this experiment to be a success, we generated load as close to actual 

production traffic as possible. The environment did not permit a replicated server, so we 

gathered traffic with other methods. We utilized a combination of Performance Monitor 

traces and events captured by SQL Profiler. 

 

 

 



 15 

(1) Performance Monitor 

Windows Performance Monitor (PerfMon) is a Microsoft Management Console 

(MMC) snap-in. It combines the functionality of other Microsoft tools including 

Performance Logs and alerts, Server Performance Advisor, and System Monitor [23]. It 

provides a graphical interface for customizing the collector sets as well as the events that 

were traced. 

PerfMon can be used to identify hardware performance limitations and has 

hundreds of possible events that it can track. This includes but is not limited to: physical 

hard disk monitoring, memory allotment, utilization percentage of processors and the 

maximum throughput of the network interfaces. When gathering this data, PerfMon saves 

the data in a trace file that can be opened with the PerfMon GUI later and sorted. 

The trace files we created were against the production database system during 

working hours. For the first performance monitoring session Performance Monitor was 

run using the following counters against our production database server for 48 hours. 

This would give us a solid baseline in terms of database query activity and hardware 

utilization. 

When utilizing Performance Monitor, we captured a multitude of metrics. Clearly, 

information regarding the load on the processors and memory would need to be captured, 

but the inclusion of items such as disk writes and reads offer us some greater insight. 

When a server reaches its maximum allocated memory, it has to page to disk. Capturing 

data about disk writes in an environment where close to none should be occurring is 

clearly telling of its performance. The following are the metrics that we collected and an 

explanation of each counter that would be utilized. 

(2) Processor Queue Length 

When a set of one or more threads is not able to run on the processor due to 

another active thread running we have a processor queue. The Processor Queue Length 

metric shows how many threads are in the queue and are unable to currently use the 

processor. A bottleneck occurring here is sign of a lack of resources and would have to be 

remedied by balancing the workload between computers or additional processors. 



 16 

(3) Batch Requests/Sec 

Batch Requests represents the number of statements executed per second. When 

correlated with other metrics, especially CPU Usage, an overall understanding of SQL 

Server’s possible throughput can be learned.  

(4) Memory Grants Pending 

Memory Grants Pending represents the current number of processes waiting for a 

workspace memory grant. This counter keeps track of the number of processes waiting 

for a memory grant to execute. An ideal number would be 0 for this metric. 

(5) User Connections 

The User Connections counter identifies the number of different users that are 

connected at the time. This figure helps identify the usage schedule of one’s system, but 

must be correlated with other factors to evaluate the impact on one’s system. 

(6) Page Life Expectancy 

Page Life Expectancy measures how long pages stay in memory in seconds. The 

longer a page stays in memory, the more likely SQL Server will be able to read the query 

results from memory instead of reading from disk. 

(7) Percentage Processor Time 

The percentage of elapsed time a processor spends to execute a non-idle thread. It 

is calculated from measuring the percentage of time that the processor spends executing 

the idle thread and then subtracting that value from 100%. 

(8) Disk Reads/Sec 

Performance Monitor captures the total number of individual disk IO requests 

completed over a period of one second. If the capture interval is set for anything greater 

than one second, the average of the values captured is presented. 

 

 



 17 

(9) Disk Read Bytes/Sec 

Performance Monitor captures the total number of bytes retrieved from the disk 

(read) over a period of time of a second. If the capture interval is set for anything greater 

that one second, the average of the values captured is presented. 

(10) Disk Write Bytes/Sec 

Performance Monitor captures the total number of bytes sent to disk (write) over a 

period of time of a second. If the capture interval is set for anything greater than one 

second, the average of the values captured is presented. 

The load generated from the PerfMon trace is negligible, thus we did not factor it 

into the overall load of the server. The only consideration that we made was the growth 

of files generated during this process. After running a few smaller trace sessions we 

estimated that a whole day of continuous monitoring would only consume ~1GB of 

storage space; the data would be generated on a separate logging server, allowing any 

writing to disk to not impact daily query performance. 

C. SQL PROFILER TRACES 

SQL Server Profiler is a server tool that lets a user capture and analyze events 

occurring within SQL Server [24]. The events could be everything from a remotely 

executing stored procedure or an administrator running an ad-hoc query. 

At the most basic level, SQL Server Profiler is only a GUI that lets a user 

interface with another feature of SQL Server called SQL Trace. SQL Trace is responsible 

for doing all the heavy lifting when Profiler is capturing SQL Server events and storing 

them. SQL Trace can be accessed in multiple ways. The first way is indirectly using the 

Profiler GUI, as we are about to do. The second way is from using built in stored 

procedures, and third using Server Management Object (SMO). 

Overall, SQL Trace is a simple communication monitoring tool. It functions 

similarly to network sniffers such as Wireshark that captures traffic on the network. The 

real difference is that SQL trace is more specialized in such that it captures traffic related 

to SQL Server and allows you to see the events occurring between client and SQL Server. 



 18 

Additionally, unlike Wireshark, which captures every packet sent over a network, SQL 

Trace only captures and processes SQL Server events.  

Firstly, a SQL Server event will occur between a client and the SQL Server itself. 

This could either be an application server gathering information to populate a report, or 

simply an administrator running an ad-hoc query. A wide range of events and information 

can be gathered in this manner. It is the job of SQL Trace, and the designer of the trace, 

to capture only the SQL Server events that are of interest and filter out those they have no 

use for. 

Here is a small subset of items that SQL Profiler can help monitor: 

• Front-end application connections, queries, T-SQL, transactions 
• Execution plan performance analysis 
• SQL Server errors and warnings 
• Traces of activity can be used to reproduce problems, can be saved and 

replayed 
• Audit user activity 
• Group or aggregate trace results for analysis 
• Create custom traces 
• Save traces to XML or CSV or to a Database table 
• Perform stress testing 

This is certainly not an exhaustive list, but it is enough to show that SQL Server 

Profiler was a great fit for our analysis job. We needed to be able to see exactly what 

queries were executed against the database, have enough fidelity to see if they were 

read/write/insert/update statements and also determine the average time it took to 

complete. 

After the filter was applied, the data was queued in memory; henceforth, they 

could be saved in a file, a database table (both locally and remotely), or to an SMO-based 

application. As you can see from the figure above, SQL Profiler itself is in fact an SMO-

based application used to access trace files. When all is said and done, the SQL Trace 

exists in a state which could not be directly accessed. One needed to interact indirectly 

using either an SMO-based application or a management tool able to write SQL queries. 



 19 

 For our research we decided to filter the SQL trace files into a remote database 

table, both to reduce congestion on our production and test machines and also to allow us 

to write SQL queries against the data for analysis. 

We gathered data that displayed a detailed view of the load on our server. We 

needed a way to measure maximum and average query length as well as the actual 

makeup of queries. This included whether a query was a read/write/insert/update 

statement. To attain this, the following events were captured using SQL Profiler. 

 
Figure 3.  This trace shows information regarding the Application that 

connects, the username, loginname, reads, writes, the process ID, the 
start time, end time, and binary data which is the SQL being executed 

against the database. 

The trace shown in Figure 3 was run against our production database over one 

complete working day. The data collected was representative of what an average 

workload would be for our application. All the data collected from this trace was inserted 

into a remote SQL Server database and into a table. This table could later be queried to 

gather the requested fidelity of information about our database. After gathering the data, 

we calculated the total updates, selects, inserts, the average processing time for each 

query, the standard deviation, and the duration. Having this allowed us to create a proper 

baseline from which to see if our testing environment will be able to perform similarly to 



 20 

production and thus we were able to tell if our experiment was delivering better 

performance. We would compare the data collected from both the SQL Profiler traces 

and the PerfMon events between both our cloud environment and our production 

environment to determine how our performance faired. 

 



 21 

IV. RESULTS AND ANALYSIS 

We collected over 8.5 million rows of data from one whole day of traffic against 

our production database server. Our trace collected exactly which queries and procedures 

were executed during the business day. This included standard stored procedures 

executed by the EMS application and adhoc queries ran by administrators of the system. 

We collected data showing who ran the query, what time it began and when it ended. 

With this information we were able to build a standard distribution of query types and 

average operating values. From this data we could begin building a similar load on our 

cloud test-bed. 

A. DATA COLLECTION, PARSING, AND ORGANIZATION 

Once we finished collecting the trace data, we knew we needed to have as close a 

recreation of data as possible. The obvious requirements were a consistent latency figure 

followed by the same percentage of query distribution. This would also be the same for 

the resource utilization percentages. By running a set of queries with random parameters 

attached, we could bypass caching employed by the database and get more accurate 

latency results. After establishing a baseline similar to that employed on our production 

machine we will increase the resources allocated to our test machine and analyze results. 

The hypothesis was that we should see at least some minor increase in the query 

performance and a decrease of resource utilization. As we doubled the amount of 

resources throughout the experiment the expectation was to see a series of increased 

performance results. 

1. Data Collection  

We used a combination of SQL Profiler traces, Performance Monitor logs and 

SQL Server Dynamic Management Views to collect data from both our production and 

testing environment. The data collected from the SQL Profiler traces were passed into a 

set of tables on a remote SQL Server database. The data collected would be pruned by a 

set of T-SQL scripts and then queries ran against the resulting data to gather statistics 

about query makeup and performance. We collected data from one full business day on 



 22 

our production system and similarly against our development system at two resource 

levels. Using Performance Monitor we gathered statistics over a range of metrics and 

outputted that data into excel spreadsheets. The data points from both levels of resource 

on our development machine and in production were compared and organized into 

graphs. Finally, data collected from the SQL Server Dynamic Management views gave us 

information regarding the breakup of types of queries in percentages. Overall the traces 

collected over 500,000,000 events between the five setups for analysis. 

2. Reading SQL Profiler Data into SQL Table 

Analyzing SQL Profiler data can prove problematic if one does not understand the 

methods available for accessing the said data. SQL Profiler information can be seen as a 

sort of black box, one that cannot be accessed unless you have compatible software or 

code that can access the SMO. In our case we utilized an idle SQL Server available for us 

to insert data as it was captured. This reduced the load on our test servers as nothing had 

to be written to the local disks. As each row of data was captured it was in turn written 

into a structured table in our remote SQL Server database. In this way we were able to 

query every line of data captured and begin to analyze the query makeup. Eventually we 

will have a single table for each SQL profiler capture: one for our initial production 

capture, a second for the low-resource test system, and a third for our test system with 

increased resources matching production. Following that, we ran two additional tests 

where we would double the resources. The fourth test would be using 8 CPU cores and 

16GB of RAM, double that of the production system. The fifth test would utilize 16 CPU 

cores and 32GB of RAM, four times that of production. 

3. Query Composition Gathering 

In order to determine the breakdown of types of queries used, either reads or 

transactional queries, we utilized the SQL Server Dynamic Management Views (DMV). 

When pulling data from the sys.dm_io_virtual_file_stats DMV, we can get the query 

composition since the database was last restarted. 

 



 23 

Table 1.   The sys.dm_io_virtual_file_stats DMV produces data regarding 
the amount of reads/writes that have occurred since the database was 

last restarted. The number of reads/writes are in a magnitude of 
1000s.  

 
 

Here we saw the amount of total data retrieved from these queries. What we were 

most interested in is the percentage of read queries as compared to the number of writes. 

Here we saw that since our database was last restarted a month ago, the percentage of 

reads was 90.4% and the writes numbered 9.6%. We compared these numbers to our 

SQL Profiler data and decided which figures we wanted to use for a baseline. Since our 

employee management system is primarily used as a reporting server, this large 

percentage of writes was due to ad-hoc administrative queries. 

After loading all our data from SQL Profiler into our database we got the number 

of reads/writes/updates written during that day in production. 

Table 2.   The query makeup from a day in production. 

 
Select Insert Update Total 

% 
Select 

PROD 3611133 11235 50871 3673239 98.31 
 

Here the read percentage fitted more closely to what we determined was accurate. 

The data collected during our day in production now was used to create a baseline for 

query distribution that we applied to our test system. 

B. BASELINE MAKEUP OF PRODUCTION 

Before beginning, we needed to have a close approximation of what types of 

queries are used in production. We then replicated those same queries, at the ratio 

collected in our previous steps on our private cloud test bed to simulate the same traffic. 



 24 

In production the most popular type of query was a read query, unsurprisingly, 

since the EMS database primarily provides reports to students and staff. The percentage 

of reads it produces is roughly 98.31% of all total queries. That portion was not be 

difficult to reproduce, as one could just schedule read queries at a much higher rate than a 

set of reasonable inserts. To gather a better insight into the performance we decided to 

review the most common queries performed in production. 

To create a similar assortment of queries as performed on our production system 

we had to go a few steps further than simply balancing out the read/write percentages to 

match. We wanted to match the same queries executed on production. To do this we 

queryed another DMV: sys.dm_exec_query_stats. Here we selected the top 10 most 

commonly executed queries. However, because this database serviced a reporting server, 

the majority of queries were executed using a parameter passed in at runtime. The simple 

response to this was to hard-code in a variable so that we could schedule this query. 

However, SQL Server would simply cache our query pages and never have to read from 

disk, thus skewing the data to preclude that our under-resourced test bed was performing 

faster than our beefier production system. To get around this we implemented a common 

SQL querying function. 

C. IMPLEMENTATION AND STACKING OF QUERIES 

In order to prevent the database from simply caching all the queries we were 

looping, we had to get a little creative. To get around this we appended a function called 

NEWID to our queries. An example is: 
 
Select top 20 percent *  
From tnpemployee 
Order by newid(); 
 

The function NEWID generates a Globally Unique ID (GUID) in memory for 

each row. By being a GUID, its number is unique and random. Thus, when the data was 

requested by GUID the results was a random set of data from the table. By performing 

our queries in this manner, we prevented the database management system from simply 

caching our queries in memory instead of utilizing system resources to retrieve the data, 



 25 

as if it was live data in a production system. After performing this on all of our system 

configurations we got an accurate readout of the query breakdown. 

Table 3.   The query makeup after running the top ten queries against our 
development machine using the newid() function for a whole day. 
This data was inserted using SQL Profiler into a table in our remote 

database and then sorted. 

  Select Insert Update Total % Select 
2-Core 3581965 1931 12140 3596036 99.6 
Prod 3611133 11235 50871 3673239 98.3 

4-Core 5969943 2703 16353 5988999 99.7 
8-Core 7126641 3120 17545 7147306 99.71 

16-Core 8167339 3345 17669 8188353 99.74 
 

We saw the queries were properly distributed according to the query breakup 

among all the systems. We also saw that as we increased system resources, the queries 

completed quicker, and we’d process more traffic. In the case of the inserts and updates, 

we saw them peaking ~3300 as the server got closer to the amount of queries scheduled.  

D. DATA COLLECTION AND ANALYSIS 

The queries replicated in our test environment are from a list of most common 

queries, which we were able to produce by querying the native Dynamic Management 

Views (DMV) built into SQL Server. All the data generated from our SQL Server 

Profiler traces was outputted into a remote database and then queried the resulting dataset 

for throughput figures. 

 

 

 

 

 



 26 

Table 4.   The average and maximum duration of query times as well as the 
average and max number of reads per request for each system. 

  
Query Completion Time 

(microseconds) Reads 

Avg Max Std Dev Avg Max Std Dev 
2-CORE 492559 11022718463 33183575 414 1925467 13430 
PROD 136746 69918999 1325329 787 25385963 5041 

4-CORE 198875 19775131 1317404 270 491522 30153 
8-CORE 124478 11838789 212562 104 1916674 3347 

16-CORE 29171 1436325 53993 22 1916674 716 
 

When running the same queries, our 2-Core machine hosted in our private cloud 

environment averaged almost 3000 extra microseconds to complete its set of queries. 

Also the most expensive query that queries our biggest table in the database took 157 

times longer to complete in our development system. On our production system it took 

slightly longer than a minute to complete, and over 3 hours to complete in development. 

When we reviewed the standard deviation and variance, we saw the differences a bit 

more clearly. 

For a query on our lower-scaled cloud database, the standard deviation was 

roughly 33 seconds, with an average query completion time of .49 seconds. In production 

the average query completion time was much faster, at .13 seconds. The standard 

deviation was only 1.3 seconds as well.  

First off the duration of our cloud database was slightly higher than that of 

production, but not by much more than 200ms. Most shocking though was the time 

required to complete the most taxing query. On our production server it took 69.9 

seconds and in the cloud just under 20. Again the standard deviation for our comparable 

cloud database performs within 8ms of that of production. Now when resources are 

increased we saw that same query completion time diminish again. With 8 cores the 

query took 11.8 seconds. With 16 cores we got down to 1.43 seconds. 

The explanation for why the production max duration query length was so high 

comparatively is because the query executed in production was adhoc query performed 

by an administrator during a period of heavy congestion. The other max duration queries 



 27 

for the other four systems were the same. This information was chosen to be reported so 

that we can see the overall max duration decrease among our cloud systems. Now we turn 

our attention to figures regarding the reads reported for each server configuration. 

Reads is the amount of logical disk reads committed on behalf of the server. 

These are logical, not physical disk reads, which happen when data requested is not 

cached in memory. If we are examining how fast one query would take between the five 

systems at load we would have to compare the CPU and MEMORY resources required as 

well as the logical reads. In certain cases, the database system may find it easier perform 

a nested loops operator, retrieving the pointers to all relevant rows then performing a key 

lookup to retrieve columns for the select list would be more efficient. Now, because each 

row had to be ‘index seeked’ individually, the same pages needed to be accessed in 

memory multiple times, each counting as a logical read. As a result, the total number of 

logical reads increased significantly. 

The read data collected did not allow us to reach many conclusions. The low 

throughput of the slowest machine attributed to a low average amount of reads posting to 

the disk, but when increased to match production we saw nearly five times the reads. 

Again there are many interpretations of the data. Now that we have much better 

resourced machines for our final iterations we can clearly see that the amount of reads 

drastically diminish, because the pages read from memory needed to be retrieved less 

times for each query due to more available processing power. 

E. PERFORMANCE MONITORING RESULTS 

Using Performance Monitor we measured and collected information. Each metric 

was important to understanding the overall health and throughput of the system 

evaluated. The following counters were examined over the course of a whole day: 

• Processor Queue Length 
• Batch Requests/sec 
• Memory Grants Pending 
• User Connections 
• Page life expectancy 
• Percentage Processor Time 
• Disk Reads/sec 



 28 

• Disk Read Bytes/sec  
• Disk Write Bytes/sec 

We overlaid the data collected from production with the lower and upper bounded 

cloud databases.  

(1) Processor Queue Length 

The graphs in Figures 4 and 5 compared processor queue lengths among the 

different production variables. 

 
Figure 4.  The queuing compared between production, and our first two server 

iterations with resources at half than and equal to production. 

 
Figure 5.  Comparison of our production machine to the 8-Core and 16-Core 

test machines. 



 29 

The values in Table 5 show the average results for the amount of threads queued 

on the five iterations of tests. We saw that the queue is similar for our cloud server with 

equal resources as production. Otherwise the queuing appeared as we expected. As more 

cores were added the queueing dropped dramatically. As we got past 8 cores, there was 

only a slight amount of additional performance to be gained from upping the CPU cores. 

Table 5.   Average processor queue performance for each system 
configuration. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 3.9 0.089 0.11 0.036 0.032 0.8334 

 

(2) Batch Requests 

 
Figure 6.  Batch requests of our 5 test iterations overlaid in a line chart. 

Table 6.   Average batch requests for each system configuration. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 0.3 1.21 17 0.89 1.56 4.192 

 

Batch requests represent the number of statements executed per second. In other 

words it was a measurement of the database’s throughput. If the server was not under 

significant load than a lower batch requests figure is not noteworthy. However, as we 

could see in the previous graph for our lesser resourced database, there was a high queue 

to use the CPU. Thus, we could conclude that there was significant load, but the 



 30 

throughput was not sufficient to handle it. Now when we examined the greater-resourced 

databases, that same load was not significant enough for us to gather meaningful results 

from this metric. There simply was not enough volume presented for our final two 

iterations to test its maximum throughput here.  

(3) Memory Grants Pending 

 
Figure 7.  Memory Grants Pending for our 5 iterations. The only server that 

saw any grants pending was our first iteration with 2 cores. 

Table 7.   Average memory grants pending for each system configuration. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 2.04 0 0 0 0 0.4 

 

Memory grants pending represents the number of processes waiting for a memory 

grant to be able to execute. The ideal number for this metric is 0, which we obtained in 

our production and higher-resourced databases. The takeaway from this metric collection 

is that the performance of the distributed memory in the cloud environment performed 

sufficiently as in there was no noticeable slowdown due to it being more distributed. 



 31 

(4) User Connections 

 
Figure 8.  The concurrent user connections for each experiment. 

Table 8.   Average amount of user connections over the 9-hour window for 
each system. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 8.5 6.45 44.81 7.7 7.27 14.9 

 

User connections measures the number of different users connected concurrently 

at any point in time. The question arose; why were there more users connected to our 

lesser resourced server than the greater resourced server? Both servers have exactly the 

same set of scheduled jobs executing at exactly the same time. The answer is that on the 

lesser resourced server, the time it took to complete a query is on average ~10000 

microseconds or .01 seconds longer. This means that due to previously scheduled jobs 

queued up to execute, additional connections from the task scheduler were required. In 

production you can see that, throughout the day, we get on average 44 concurrent 

connections from staff and students. This metric only serves to display usage patterns for 

our actual production system; we gain scarce information about our test systems which 

all are using procedurally generated queries. 

 
 
 



 32 

(5) Page Life Expectancy 

 
Figure 9.  Page life expectancy of queries in memory. 

Table 9.   Page life expectancy for each system configuration. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 11257 65699 31946 1200582 17661 265429 

 

Page life expectancy measures how long pages stay in memory is seconds. The 

longer a page stays in memory, the more likely SQL Server will be able to read the query 

results from memory instead of disk. Overall this metric is rather inconsequential as 

every new query is stored in memory when possible. The reason that the value for the test 

system had a much higher value is that the cloud database was left online for a few weeks 

before the resources were increased and measured; thus the server was online and had 

more queries scheduled against it, thus ticking up the page life values higher and higher 

and never maxing out due to such a high amount of allocated memory. Had we had a 

more memory intensive set of queries, we might see something other than an iterating 

line. 



 33 

(6) Percentage of Processor Time 

 
Figure 10.  The percentage of processor utilization for our first two system 

iterations overlaid. 

 
Figure 11.  The percentage of processor utilization for our production system 

and our two higher resourced systems. 

Table 10.   Average % usage of the processor being utilized for each system 
configuration. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 68.97 2.97 5.36 1.83 1.66 16.158 

 



 34 

The percentage of processor time is the percentage of time the processor spends 

executing an idle thread and then subtracting the value from 100%. This is more exact 

than simply reading what the processor utilization is at, at any one time. This was 

measuring how much of the processor is being used by each thread that is running. The 

collected data was separated out onto our lower-resourced databases and then again for 

our final 2 systems with production overlaid. It might appear that the higher-resourced 

cloud database was running close to 100% all the time, however this was because we 

collected data consistently for the entire time period and then placed all this data on one 

small graph. When you refer to the chart above you can see that as we added resources, 

the amount of total processor utilized became minimal.  

 

(7) Disk Reads/sec 

 

Figure 12.  Amount of disk reads per second for all five iterations. 

Table 11.   Average disk read requests per second. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 289.85 0.55 50.1 0.15 0.096 68.1 

 

 

 



 35 

Performance Monitor captures the total amount of individual IO requests over the 

period of a second against the disk. Here we saw that in production the amount of reads 

requests against the disk are fewer, but each are typically large in volume. These queries, 

outside of the most expensive ones are not replicated in our 2-Core environment, thus we 

saw that the total reads for our environment are much lower. However, on average there 

are more reads perpetrated in our lesser system; why is that? We wanted it that way. If 

you refer to Section C regarding NEWID, we were attempting to generate random queries 

so that we could avoid every page being simply cached in memory. This chart showed us 

that 2GB of RAM was insufficient and thus the database had to page to disk when it ran 

out of memory. After the resources were increased to 4GB of RAM this was no longer an 

issue and we see little disk utilization in the following trials. 

 

(8) Disk Read Bytes/sec 

 

Figure 13.  Bytes retrieved from the disk per each read. 

Table 12.   Average number of bytes retrieved per request for each system 
configuration. 

 
2-Core 4-Core Prod 8-Core 16-Core Total 

Average 3189375 57063 1125368 10015 6190 866189 

 

 



 36 

Disk read bytes/sec returns the number of bytes retrieved from the disk over the 

period in which it is queried. We saw the amount of bytes queried was rather consistent, 

this was because we queried a random percentage of the queries from production. Our 

production system had a few larger reads, the biggest being 230kb in size. As we stated 

before, our lowest resourced machine would page to disk constantly under the query load. 

After resources were increased to 4 CPUs and above, we no longer saw much disk 

reading as the data set would become more and more complete in memory. 

 

(9) Disk Writes/Sec 

 

Figure 14.  Disk writes per second for production overlaid with our two smaller 
systems. 

 
 
 



 37 

 

Figure 15.  The disk writes per second overlaid with production and our two 
final higher-resourced machines. 

Table 13.   Average disk write requested per second for each system 
configuration. 

  2-Core 4-Core Prod 8-Core 16-Core Total 
Average 9.57 1.53 6.56 0.62 0.58 3.772 

 

Disk write/sec captures the total number of individual disk write requests 

completed over a period of a second. We expected only a minor amount of writes against 

the lower and upper resourced cloud servers. We also expected them to be exactly the 

same amount of writes. However, here we saw just the opposite. As we hypothesized in 

the previous two graphs, we would have evidence of paging to disk if we saw 

inconsistencies in the reads. Here we had more writes occurring in our 2-Core server. 

After we determined that there was enough queueing in our lesser-resourced server to 

cause less throughput, we expected that there would be less writes as well. Little can be 

gleaned in the performance differences between our higher-resourced servers and 

production because the memory was never severely impacted. 



 38 

 



 39 

V. CONCLUSIONS AND FUTURE WORK 

We present our conclusions in this chapter based on the data collected and 

analyzed from the SQL Server traces against our production and cloud servers. The 

cloud-based system needs to meet similar query completion time and CPU utilization 

figures as production and must demonstrate increased throughput when scaled upward for 

us to recommend cloud deployment of the PYTHON database. In our hypothesis we 

predicted that the cloud-based server would perform close to or slower than the 

standalone server, while using more resources and when scaled upwards, would slightly 

increase its performance 

A. CONCLUSIONS 

The major conclusions from our experiment are as follows. 

(1) With similar levels of processing and storage capacity, the cloud-

based system’s average query completion time was similar to 

production. 

The average query completion time is a dependable demonstration of a database’s 

throughput. This is even truer in our experiment due to the fact that we created synthetic 

traffic, subjecting each VM configuration to the same amount of load. In our standalone 

system the average query completion time is 136746 microseconds. On our cloud-based 

VM with comparable hardware, the average was only 62 milliseconds slower. The 

database that we based this experiment is a reporting database, making the 62 ms 

difference reasonable because of the large variety of complex queries that get executed 

on a near-constant schedule. The average time it takes to complete a query in production 

is 0.136 seconds, and in our experiment 0.198 seconds. 



 40 

(2) The cloud-based server utilized resources more efficiently. 

This test was a big win for the cloud-based VM. The VM performed similarly to 

production and on average utilized less resource, with only 2.97% used of its 4 cores on 

average compared to the production system’s average of 5.36%. There was a similar 

trend with respect to the processor queue length. The cloud-based VM averaged .089 

processes queued per second, while the production machine received .11 processes. A 

large concern for anyone migrating to a cloud-based hosting environment should be 

efficiency.  Even more so in a private-cloud where one has to personally host and procure 

all the systems themselves. The results of this experiment show that migrating databases 

similar to the IMS of the Naval Postgraduate School, namely data warehouses and 

reporting databases, lend well to being hosted in a private-cloud. 

(3) The performance of the cloud-based system increased significantly 

when granted sufficient additional resources. 

One of the primary selling points of a cloud-based system is the ease of resource 

allocation, either in response to demand, or pro-actively in anticipation of a large increase 

in traffic. We doubled and then quadrupled the resources allocated to determine if this 

would affect performance without an increased workload. With our VM increased to 8 

CPU cores, the average query completion time dropped to 124478 microseconds, making 

it .012 seconds faster than the production system. When increased to 16 CPU cores we 

would see a dramatic increase in query completion time, as the average time dropped to 

29171 microseconds. 

The data collected from our trial proves that reporting-style databases are well 

suited for deployment to a private-cloud environment. Already, deploying in a private-

cloud environment ensures that the DOD can administer the security and address the 

reliability of its servers. We have now shown that when deploying reporting-type 

databases, such as data-warehouses, the performance and scalability advertised by cloud 

services can be attained. 



 41 

B. FUTURE WORK 

If I were to perform this experiment again, I would increase the types of databases 

used and extend the type of cloud environments surveyed to include public-cloud 

offerings. 

The work performed in this thesis can be used as a basis in evaluating other DOD 

reporting-style database applications for their suitability for private-cloud hosting. If we 

were to extend this thesis, then including transactional databases would expand the 

possible application of our findings. Using a transactional database instead of a reporting-

style database would mean we would have a larger percentage of write requests to our 

hard drives, thus allowing us to evaluate their performance. It also would place a much 

higher demand on memory utilization and page life expectancy, which was an area of this 

thesis not fully explored due to the type of databases used. 

To further extend the application of our thesis, we would want to perform our 

experiment in a public-cloud environment. Here we could evaluate across multiple hosts 

and the levels of performance offerings available. Additionally, metrics such as latency 

due to hosting location will play a big factor in suitability. With this data we could 

evaluate across multiple arenas, including public, private and standalone environments. 

 



 42 

THIS PAGE INTENTIONALLY LEFT BLANK  



 43 

LIST OF REFERENCES 

[1] American Forces Press Service. (2014, April 15). DOD releases report on 
estimated sequestration impacts [Online]. Available: 
http://www.defense.gov/news/newsarticle.aspx?id=122065 

[2] S. Vogel. (2013, May 29). Defense workers receive furlough notices [Online]. 
Available: http://www.washingtonpost.com/blogs/federal-
eye/wp/2013/05/29/defense-workers-begin-receiving-furlough-notices/ 

[3] T. Lathe. (2014, July 9). Law enforcement access to data in the cloud [Online]. 
Available: http://www.rackspace.com/blog/law-enforcement-access-to-data-in-
the-cloud/ 

[4] D. Goodin. (2015, May 13). Extremely serious virtual machine bug threatens 
cloud providers everywhere [Online]. Available: 
http://arstechnica.com/security/2015/05/extremely-serious-virtual-machine-bug-
threatens-cloud-providers-everywhere/ 

[5] L. C. Williams. (2014, November, 26). Happy Black Friday, your credit card 
could very likely be stolen again [Online]. Available: 
http://thinkprogress.org/economy/2014/11/26/3597288/target-breach-anniversary/ 

[6] Miniwatts Marketing Group. (2014, December 1).  Internet growth statistics 
[Online]. Available: http://www.internetworldstats.com/emarketing.htm 

[7] Institut Numêrique. (2013, June 18). Chapter 1 : The concepts of cloud computing 
[Online]. Available: http://www.institut-numerique.org/chapitre-1-les-concepts-
du-cloud-computing-51c0279ca534a 

[8] S. Basu, “Productivity growth in the 1990s: Technology, utilization, or 
adjustment?,” NBER Working Paper No. 8359, pp. 2–3, July 2001. 

[9] D. Law. (2013, February 18). Outlook.com leaves preview as the world’s fastest 
growing email service going from 0 to 60 million in just 6 months [Online]. 
Available: http://blogs.office.com/2013/02/18/outlook-com-leaves-preview-as-
the-worlds-fastest-growing-email-service-going-from-0-to-60-million-in-just-6-
months/ 

[10] Google. (2015, March 23). Company history [Online]. Available: 
http://www.google.com/about/company/history/ 

[11] C. Janssen. (2014, December 22). Elastic computing [Online]. Available: 
http://www.techopedia.com/definition/26598/elastic-computing-ec 



 44 

[12] J. McKendrick (2014, December 23). Without PaaS, Docker is just a bunch of 
containers [Online]. Available: http://www.zdnet.com/article/paas-and-docker/ 

[13] Wikipedia (2015, June 09). Cloud computing [Online]. Available: 
http://en.wikipedia.org/wiki/Cloud_computing 

[14] M. Rouse (2015, January 1). Infrastructure as a Service (IaaS) [Online]. 
Available: http://searchcloudcomputing.techtarget.com/definition/Infrastructure-
as-a-Service-IaaS 

[15] R. Sheldon (2014, March). Database as a Service [Online]. Available: 
http://whatis.techtarget.com/definition/Database-as-a-Service-DBaaS 

[16] J. Sanders (2014, July 1). Hybrid Cloud: What it is, why it matters [Online]. 
Available: http://www.zdnet.com/article/hybrid-cloud-what-it-is-why-it-matters/ 

[17] Microsoft (2015). What is Microsoft Azure [Online]. Available: 
http://azure.microsoft.com/en-us/overview/what-is-azure/ 

[18] Amazon (2015). Amazon EC2 [Online]. Available: http://aws.amazon.com/ec2/ 

[19] J. McKendrick (2013, July 21). 5 Benefits of cloud computing you aren’t likely to 
see in a sales brochure [Online]. Available: 
http://www.forbes.com/sites/joemckendrick/2013/07/21/5-benefits-of-cloud-
computing-you-arent-likely-to-see-in-a-sales-brochure/ 

[20] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing hardware 
reliability. In SoCC ’10: Proceedings of the 1st ACM symposium on Cloud 
computing, pages 193–204, Indianapolis, USA, 2010  

[21] R. Miller (2012, March 14). Estimate Amazon cloud backed by 450000 servers 
[Online]. Available: 
http://www.datacenterknowledge.com/archives/2012/03/14/estimate-amazon-
cloud-backed-by-450000-servers/ 

[22] D. J. Power (2013, October 12). What is ACID and BASE in database theory 
[Online]. Available: 
http://dssresources.com/faq/index.php?action=artikel&id=281 

[23] Microsoft (2007, April 25). Performance and reliability monitoring getting started 
guide for Windows Server 2008 [Online]. Available: 
https://technet.microsoft.com/en-us/library/cc771692.aspx 

[24] Microsoft (2015). SQL server profiler [Online]. Available: 
https://msdn.microsoft.com/en-us/ms181091.aspx 



 45 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 

 Ft. Belvoir, Virginia 

 

2. Dudley Knox Library 

 Naval Postgraduate School 

 Monterey, California 

 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Problem Statement and methodology
	B. Research Description and Hypothesis
	C. Organization

	II. BACKGROUND And RElated work
	A. Origins and fundamental knowledge
	B. OVERVIEW of CLOUD COMPUTING
	C. Types of Cloud ARCHITECTURES
	(1) Software as a Service (SaaS)
	(2) Platform as a Service (PaaS)
	(3) Infrastructure as a Service (IaaS)

	D. TYPES OF CLOUDS
	(1) Private Cloud
	(2) Public Cloud
	(3) Hybrid Cloud

	E. CLOUD DATABASES background
	(1) Database as a Service (DBaaS)
	(2) Scaling of Cloud Databases

	F. BENEFITS OF CLOUD COMPUTING
	(1) Less Initial Investment
	(2) Scalability
	(3) Increased Availability
	(4) No Single Points of Failure

	G. Deployment Considerations for Cloud Databases

	III. OUTLINE OF EXPERIMENT
	A. DESCRIPTION OF APPLICATION
	B. CREATING A BASELINE OF SYSTEM LOAD
	(1) Performance Monitor
	(2) Processor Queue Length
	(3) Batch Requests/Sec
	(4) Memory Grants Pending
	(5) User Connections
	(6) Page Life Expectancy
	(7) Percentage Processor Time
	(8) Disk Reads/Sec
	(9) Disk Read Bytes/Sec
	(10) Disk Write Bytes/Sec

	C. SQL PROFILER TRACES

	IV. Results and Analysis
	A. Data Collection, Parsing, and Organization
	1. Data Collection
	2. Reading SQL Profiler Data into SQL Table
	3. Query Composition Gathering

	B. Baseline makeup of production
	C. Implementation and stacking of queries
	D. Data collection and analysis
	E. Performance Monitoring Results
	(1) Processor Queue Length
	(2) Batch Requests
	(3) Memory Grants Pending
	(4)  User Connections
	(5) Page Life Expectancy
	(6)  Percentage of Processor Time
	(7) Disk Reads/sec
	(8) Disk Read Bytes/sec
	(9) Disk Writes/Sec


	V. CONCLUSIONS AND FUTURE WORK
	A. Conclusions
	(1) With similar levels of processing and storage capacity, the cloud-based system’s average query completion time was similar to production.
	(2)  The cloud-based server utilized resources more efficiently.
	(3) The performance of the cloud-based system increased significantly when granted sufficient additional resources.

	B. Future Work

	List of References
	Iinitial distribution list

